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Some relationships between two different concepts of noncommutativ e time
operators are discussed. One is the concept of a Hermitian, but not self-adjoint
time operator TB based on a positive-operat or-valued measure for a dynamical
observable B. The other is the concept of a self-adjoint time operator TL obtained
in the Liouville representation, a special case of the standard representation of
quantum theory. Conditions are indicated under which a self-adjoint extension
of TB leading to TL can be constructed. Similarities with the notions of consistent
and inconsistent histories are indicated. Conceptual issues as to the interpretation
of the different time operators are outlined with particular emphasis on the notion
of temporal nonlocality.

1. INTRODUCTION

There is a long tradition of approaches toward a time observable which

does not commute with all other observables, i.e., is not an element of the

center of the algebra of observables of the system considered. This tradition

is intimately connected with the history of the energy±time uncertainty relation
(Jammer, 1974), which still represents an intriguing and provocative topic

(see, e.g., Unruh and Wald 1989; Busch, 1990; Isham, 1993; Atmanspacher,

1994). A basic objection against a time operator T not commuting with a

suitable energy operator, the (bounded or even discrete) Hamiltonian H of a

system, was formulated by Pauli (1933a). If H and T are required to act in

a Hilbert space of square-integrable functions, then Pauli’ s theorem says
essentially that a self-adjoint time operator TL with the entire real axis as its

spectrum and with
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i[H, T] Þ 0 (1)

does not exist.

Within recent years, two basic approaches have been developed to cir-

cumvent Pauli’ s objection. One of them refers to the generalization of quantum

mechanical observables in terms of positive-operator-valued (POV) measures.

Those measures are generally not self-adjoint, and therefore Pauli’ s theorem

does not apply to them. Busch et al. (1994) and Giannitrappani (1997) showed

how quantum mechanical time operators TB that do not commute with the

proper Hamiltonian of a system can be introduced. It is important, however,

to stress that those time operators are not universally given, but depend on

the context of the specific system.

Another route toward a noncommutative time operator was opened in the

mid-1970s when Misra and others (Misra, 1978; Misra et al., 1979; cf. Wight-

man, 1982) suggested the definition of a self-adjoint time operator TL based on

a projection-valued (PV) measure in the Liouville representation of quantum

theory. As will be argued below, this representation can be interpreted as a

metarepresenation with respect to the usual Hilbert space formulation, hence

Pauli’ s theorem does not apply to the corresponding algebra of operators, often

called superoperators. Since this algebra differs from that of operators in Hilbert

space, TL as a superoperator has a conceptual status different from TB.

In view of this difference, it is interesting to explore whether the two types

of time operators share common properties, what they mean in a given situation,

and how they are related to each other. These questions form the central part of

this paper. They will be addressed after a brief introduction to POV time TB

(Section 2) and time as a PV superoperator TL in the Liouville representation

(Section 3). The material in these two sections is kept as compact as possible;

it is in no way intended to substitute for the more detailed literature. In Section

4, a way is discussed to understand a number of important aspects of the relation-

ship between TB and TL. Section 5 discusses the kinds of temporal nonlocality

implied by the two noncommutative time operators. Of special interest is their

relationship to a temporal nonlocality that follows from temporal Bell inequali-

ties as derived within the framework of consistent and inconsistent histories.

Section 6 summarizes the main arguments.

Let us emphasize that the present article does not present novel rigorous

results in a formal sense. Rather, it discusses a collection of approaches and

arguments and their mutual relationships with respect to an issue that we

consider to be one of the most significant issues of modern physics, its

philosophy, and presumably even of other sciences. The issue is the existence

of a time observable in addition to time as a parameter, together with its

consequences.
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2. POV TIME

In traditional quantum theory, observables are defined to formalize prop-

erties of a given system. This is usually done in such a way that the correspond-

ing operators are chosen to be projection-valued self-adjoint operators. This
reflects the assumption that any measurement of an (ª elementaryº ) observable

essentially provides an outcome in the sense of a binary (yes/no) alternative

[cf. von Neumann’ s (1932) expectation value postulate]. POV measures are

concepts for observables that are more general than PV measures. They are,

in general, not self-adjoint, i.e., they are not projectors. Their eigenfunctions

(if they exist) are not necessarily orthogonal. As indicated by Davies (1976),
Holevo (1982), Ludwig (1983), and others [most recently Braunstein et al.
(1996) and Busch et al. (1996)], the concept of POV measures is particularly

important for general measurement theory. For a more recent treatise describ-

ing other applications of POV measures see Busch et al. (1996).

A POV measure is a triple ( L , S , E), where S is a ring (e.g., a s -field)

of subsets of a set L and E is an operator-valued set function on S with the
following properties (Berberian, 1966):

x E is positive, that is, E(M) $ 0 for each M P S .

x E is additive, that is, E(M ø N) 5 E(M) 1 E(N) whenever M and

N are disjoint subsets in S (M ù N 5 0¤).

x E is continuous in the sense that E(M) 5 sup E(Mn) whenever Mn

is an increasing sequence of sets in S whose union is also in S .

[Another, more convenient formulation is to say that E is a POV measure

on ( S , L ) if E is positive, additive, and continuous.]
A POV measure is a probability measure if it satisfies these conditions

and is also normalized: E( L ) 5 1. A probability measure is a PV measure

if it is multiplicative: E(M ù N) 5 E(M)E(N). In this case, the corresponding

operator is idempotent and self-adjoint, and the set of its eigenfunctions (if

they exist) is orthogonal. The characteristic function of a POV measure is

the entire interval [0,1], whereas that of a PV measure is the set {0,1}.
Hence, PV measures correspond to observables forming a Boolean algebra

of measurements with binary alternatives (Primas, 1983), whereas POV mea-

sures correspond to a non-Boolean algebra. Sometimes, those measurements

have been called ª fuzzy,º thereby suggesting some misleading relation to the

theory of fuzzy sets. The theory of fuzzy sets (Klir and Folger, 1988) provides

tools beyond conventional probability theory. While probabilities in the con-
ventional sense are defined as probabilities of binary alternatives, fuzziness

is a measure introduced at the level of the alternatives themselves, generally

of infinitely many alternatives (Atmanspacher, 1989). POV observables are

ª unsharpº in the terminology of Busch et al. (1996). They are formally
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based within conventional probability theory, so we avoid the notion of

fuzziness here.

Jauch and Piron (1967) used POV measures to generalize the notion of
a localizable state of a system to which the entire body of traditional quantum

mechanics refers although its logical structure is independent of localizability.

A state of a system is localized if, given a domain D in regular position

space, there is a state for which the probability for the system to be in D
is one. Formally, this corresponds to the existence of three well-defined,

commuting operators corresponding to the components of a position observ-
able (Bacry 1988, Chapter 4). The position of a localizable system is always

represented by a PV measure, say Y. Due to a theorem of Naimark (1943;

see also Sz.-Nagy and Foias, 1970; Beals, 1977) for every POV measure X
in a Hilbert space * an extension *+ of * and a PV measure Y in *+ can

be constructed such that X 5 PYP, where P is a projection from *+ to *
which does not commute with all the operators Y. Then the projections defined
by F 5 P ù X represent a generalized spectral measure giving rise to a

generalized concept of localizability. In this way, POV measures provide a

framework in which the problem of the localizability of massless particles

with spin [such as photons (Pauli, 1933b)] can be understood in terms of a

generalized, ª weakº localizability due to a suitable POV measure.
For the definition of a time operator based on a POV measure, one can

proceed in the following manner. If H is the Hamiltonian of a system S, then

t j e 2 iHt, t P R, is a unitary representation Vt of the time translation group.

If, furthermore, Q is a time interval during which an event is expected to

occur with some probability Trace( r B) in a state r of S and for a suitable

dynamical variable B( Q ), then B( Q ) satisfies.

V*
t B( Q )Vt 5 B( Q 2 t) (2)

where

Vt 5 e 2 iHt

Such a dynamical variable is a POV measure for a time observable

(Busch et al., 1994; Giannitrappani, 1997). Its construction is possible in
specific cases, but cannot be universally prescribed; it depends crucially on

contexts given by the system considered. On the basis of B, a time operator

(briefly: POV time) can be defined according to

TB 5 # tB(dt) (4)

which is (in general) not self-adjoint and fulfills the commutation relation
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i[H, TB] 5 1 (5)

without contradicting Pauli’ s theorem (Busch et al., 1994, Giannitrappani,

1997).

POV time operators TB have no spectral decomposition in the usual sense

of orthogonal eigenfunctions. Their definition presupposes a nonstationary

dynamical observable B:

d ^ B &
dt

Þ 0.

For a stationary state, the temporal derivative of ^ B & vanishes. For

instance, if ^ B & were taken as an energy of a stationary state, this would mean

that energy is a ª sharpº observable with vanishing bandwidth. In case of a

nonstationary date, B gives rise to a so-called ª unsharpº observable in the

sense of an ª unsharpº time of occurrence of an event. If ^ B & were an energy
in this case, then there is a nonvanishing bandwidth D E, corresponding to a

time interval D t 5 " / D E (Mandelstam and Tamm, 1945) within which no

binary, (yes/no) alternatives are possible. At this point, the question remains

open whether this ª unsharpnessº is simply of statistical significance or reflects

a fundamental indeterminacy of individual quantum events.

3. PV TIME

3.1. Time Operator in Dynamical Systems

From a different point of view, Misra and others (Misra, 1978, Misra

et al., 1979a,b; see also Prigogine, 1980; Suchanecki, 1992) introduced a

time operator TL on the basis of the Liouville representation of a dynamical

system. A related definition of a time operator, based on the theory of

stochastic processes, was proposed by Tjù stheim (1976) and Gustafson and

Misra (1976); see also Primas (1997a). In the following, we focus on the
Liouville representation, in which the time operator is a shift operator TL

U*t TLUt 5 TL 1 t 1 (7)

with

Ut 5 e 2 iLt (8)

The time operator TL does not commute with the Liouvillean L as

defined through

L r 5 i
- r
- t

(9)

Since the spectrum of L is not bounded, the commutation relation
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i[L, TL] 5 1 (10)

does not contradict Pauli’ s theorem (see remarks below concerning the rele-

vance of L as an energy operator). In contrast to TB, the time operator TL is
self-adjoint and has a unique family {F(.)} of spectral projections such that

a spectral decomposition

TL 5 # t F(dt) (11)

exists (more about this spectral decomposition later).

As Misra (1978) has shown, a necessary condition for the existence of
TL for a classical dynamical system is mixing, and a sufficient condition is

that its Kolmogorov±Sinai entropy hT (Kolmogorov, 1958; Sinai, 1959) is

positive-definite, hT . 0 (see Suchanecki, 1992, for more details.) In the

framework of finite-dimensional nonlinear dynamical systems, this means

that the system is intrinsically unstable in the sense of exponentially diverging
trajectories (K-flow, chaos) due to positive Liapunov exponents. In the frame-

work of stochastic processes, this is to say that the existence of a projection-

valued operator TL requires the dynamics of the system to be backward

deterministic and forward nondeterministic (Primas, 1997a). In both frame-

works, the K-flow condition is crucial.

The associated breaking of the time-reversal symmetry of the determinis-
tic evolution due to L can be formally achieved if the unitary group U t

generated by L is mapped onto a semigroup W t (more precisely: one of two

possible semigroups) according to

W t 5 L Ut L 2 1 (12)

where L characterizes an invertible, nonunitary, positivity-preserving trans-

formation r j r Ä 5 L r such that

L Ut r 5 W t L r (13)

The irreversible, stochastic semigroup W t acts on the states r Ä by

r Ä t 5 Wt r Ä (14)

where r Ä can be interpreted as the state of an intrinsically random system,

for instance belonging to the class of exact systems (Mackey, 1992; Sucha-

necki, 1992).

The transformation L can be constructed as

L 5 S 1/2, L * L 5 S (15)

if S is a Liapunov function of the system under study. Such a Liapunov

function is defined by the conditions S . 0, dS/dt # 0 (or vice versa) which
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are typically satisfied for an entropy close to thermal equilibrium. [Misra

(1978) excludes the equilibrium situation itself by requiring S . 0, dS/dt ,
0.] In this sense, the dynamics according to W t can be interpreted as an
irreversible approach toward an equilibrium state.

It has been suggested (Atmanspacher and Scheingraber, 1987) that the

restriction to the neighborhood of equilibrium situations be generalized by

replacing the notion of entropy by a property defined information. This allows

us to consider situations such as attractors of dissipative systems far from

thermal equilibrium and other ª dynamicalº equilibria. A first step in this
direction involves defining an information operator M according to [for details

see Atmanspacher (1997) and references given there]

U *t MU t 5 M 2 hT t1 (16)

again with

Ut 5 e 2 iLt (17)

The Kolmogorov±Sinai entropy hT is an empirically accessible (Grass-

berger and Procaccia, 1983) dynamical invariant of the system. Clearly, M
is a function of TL, M 5 M(TL). It is important to realize that the definition

of M is more general than that of TL insofar as M can be defined even for

nonmixing ergodic systems with hT 5 0, whereas a necessary condition for
the existence of TL is strong mixing, sometimes even hT . 0. While TL, if

it exists, does not commute with the Liouvillean L, M commutes with L iff

hT 5 0, and M does not commute with L iff hT . 0 (Atmanspacher and

Scheingraber, 1987; Atmanspacher, 1997):

i[L, M ] 5 hT1 (18)

There are a number of conceptual problems with the approach originally

proposed by Misra (1978). First of all, and most obvious, the operator TL is

introduced as a shift operator within the framework of a unitary evolution

according to U t , but finally it turns out that a necessary condition for its

existence is a semigroup evolution, e.g., given by W t . This problem is reflected
by the fact that the L transformation relating Ut and W t to each other breaks

the time-reversal symmetry of the unitary evolution of r . Wightman’ s question

as to the physical meaning of r
Ä

(Wightman, 1982) hits precisely the same

point. It may be speculated that the transformation between r and r
Ä

can be

regarded as a transformation between linear infinite-dimensional systems

(stochastic processes, Wiener chaos) and nonlinear finite-dimensional systems
(chaos aÁ la Kolmogorov and Sinai). Some indications in that direction can

be found in Braunss (1985) and Suchanecki (1992). Mackey (1992) interprets

L as a transformation that basically creates a noninvertible ª exactº system

as a projection (ª traceº ) of an invertible K-flow.
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Another basic issue is the fact that both TL and M are defined for classical

systems so far. A quantum analog to the KS entropy in infinitely many

dimensions was introduced by Connes et al. (1987), but it is not easy to
interpret this analogy at a conceptual level. Also, more recent attempts to

define a time operator for quantum systems in the framework of rigged

Hilbert spaces remain to be evaluated in detail. In rigged Hilbert spaces the

concept of self-adjointness can be rigorously applied to operators, which are

then denoted ª essentiallyº self-adjoint, meaning that their extension into usual

Hilbert space is self-adjoint. Generalized spectral decompositions in rigged
Hilbert spaces can lead to eigenvalues with nonvanishing imaginary part,

e.g., for resonances (BoÈ hm and Gadella, 1989).

3.2. Superoperators?

Misra et al. (1979b) have argued that it is necessary to proceed to

the level of so-called superobservables and superoperators if entropy or

information is to be formally incorporated as a Liapunov function into a

consistent formal representation of quantum and classical systems. Today it
is well known that the Liouville representation used by Misra et al. is a

special case of the standard representation, a reducible representation of

quantum theory (Haagerup, 1975), which makes it possible to deal with

commutative (ª classicalº ) as well as noncommutative (ª quantumº ) properties

of a system in one and the same formal framework. It is not the goal of this

paper to present this formal approach in detail; for a brief and illustrative
introduction in this regard (however, without particular reference to entropy

or time observables) see Grelland (1993).

From a conceptual point of view it is interesting to try to understand

the distinction between ordinary quantum mechanics with its states and

observables and the Liouville approach requiring superstates and superobserv-
ables. In fact, the Liouville approach reformulates the algebra of observables

of ordinary quantum mechanics as a vector space whose elements are super-

states on which superoperators act. In terms of algebraic quantum theory,

this amounts to nothing else than a GNS (Gel’ fand±Naimark±Segal) represen-

tation not involving the notion of superoperators. This has the consequence

that, e.g., the expectation value of TL is defined by

^ TL & r 5 ( r Å , TL r Å )

5 F ^ r Å *TL r Å & (19)

where r Å 5 r 2 r eq is an excess distribution function denoting the distance

of r from the microcanonical equilibrium distribution r eq, and F is a suitable

reference state for the GNS construction, possibly r eq. The expectation value

of TL is called the internal time of the distribution r , if r Å is an eigenfunction
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(eigenoperator) of TL. The system’ s internal time advances as the time parame-

ter t labeling the dynamical evolution Ut (or Wt) increases (Misra et al. 1979a;

Lockhart et al., 1982):

^ TL & r t 5 ^ TL & r 0 1 t (20)

In more complicated cases, e.g., if r Å is not an eigenfunction of TL, but a

combination of eigenfunctions corresponding to two or more distinct eigenval-

ues, one can define an ª average internal timeº of r which behaves equivalently
(Misra et al., 1979a).

The ª second orderº way of thinking connected with the concept of

superoperators can be illustrated by an information operator such as defined

above. The eigenvalues of M refer to the amount of information with respect

to a property of a system that can (under certain circumstances) be made

available for an observer. The self-adjointness of M expresses a binary alterna-
tive with respect to the question of whether a binary alternative at the level

of first-order properties has been decided. By contrast, ordinary operators

refer to those properties themselves (positions, momenta, spins, energies,

etc.). In this sense, an information operator represents an element of a ª meta-

description,º referring to ª metapropertiesº of a system. It belongs to an

algebra of ª metaobservablesº which are often denoted as superoperators.
[Braunss (1985) indicated a generalized version of such an idea in terms of

a hierarchy of algebras of observables and their associated state spaces. Primas

(1963) introduced superoperators in the context of purely noncommutative

systems (with irreducible factor type I algebras) without classical observables;

see also references given there. Some more remarks about the relationship
between metaobservables and observables in the framework of a standard

representation will be made in Section 4.]

This is also the case for any other operator that is defined at the same

level as M, in particular for TL and the Liouvillean L. Hence, these operators

play a role that differs from that of observables in ordinary (ª first orderº )

quantum theory. Since the Liouvillean can be written as the Poisson bracket
of the Hamiltonian and an appropriate state function,

L r 5 {H, r } (21)

its eigenvalues can be interpreted as differences of energies. However, two

points must be emphasized in this context. First, this is not the most prominent

meaning of the Liouville operator. Somewhat confusingly, L has often been
used as an evolution operator for states as well as observables [see Antoniou

and Suchanecki (1997) for a clarification], and there are Liouville-type equa-

tions that are more general than its prototype L r 5 i - r / - t. Second, it remains

to be clarified in detail under which conditions L can be faithfully interpreted
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as an observable for energy differences. Recent work of Ban (1991) and

Grelland (1993) gives first indications of possible approaches in this direction.

As to the time operator TL , the situation is a bit more transparent. The
eigenvalues of TL are sometimes denoted in terms of ª internal time,º some-

times in terms of ª age.º Both concepts acquire significance through the time

scale 1/hT characterizing specific properties of the information flow of a

system according to M (Shaw, 1981; Goldstein, 1981; Farmer, 1982; Atmans-

pacher and Scheingraber, 1987; Caves, 1994). For systems with hT 5 0, no

such information flow exists, hence TL cannot be defined for such systems.
If hT . 0, then the system is mixing and sensitive to initial conditions (in

the sense of positive Liapunov exponents). The time scale given by the

inverse of the information flow rate hT is the time scale on which correlations

typically decay. In other words, the inverse of hT is a time scale for which

the future behavior of the system can be reasonably well predicted, given

the accuracy desired for the properties whose values are to be predicted.
Therefore, TL refers to a (second order) property of (first order) properties

of a system in the same manner as M does [remember that M 5 M(TL), such

that the logical level of M and TL is the same]. Although the inverse of hT

is usually measured in terms of an ordinary parameter time, its significance

reaches beyond such a concept.

4. RELATIONS BETWEEN TB AND TL

A most significant formal difference between TB and TL is given by the

fact that POV time is in general not self-adjoint, whereas a time operator in

the sense of Misra, i.e., in the Liouville representation, is a self-adjoint PV
measure. As mentioned above, the self-adjointness of an operator is usually

taken as a necessary condition for a description of Boolean measurements

of the corresponding observable. More generally, this means that any measure-

ment can be decomposed into more elementary measurements (projections),

i.e., measurements with binary (yes/no) alternatives. With particular respect

to TL , this implies that the description of the history of a system cannot be
decomposed into infinitesimally small subhistories.

For nonlinear systems evolving as a function of a continuous parameter

time, the K-flow condition imposes restrictions on the temporal extension of

those time intervals for which binary alternatives are possible. This is so

because the definition of a K-flow comprises the definition of a partition

on the relevant state space: the generating partition (Cornfeld et al. 1982;
Crutchfield, 1983). Since the boundaries of phase cells of a generating parti-

tion are mapped onto themselves under the evolution of the system, any

generating partition is a Markov partition and U t can be transformed into a

Markov process Wt . [This has been demonstrated for the discrete baker’ s
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transformation by Misra et al. (1979a).] Even continuous K-flows therefore

contain an element of discreteness that is crucial for the definition of a self-

adjoint TL and its spectral decomposition. The inverse of the KS entropy hT

serves as a measure for the mean temporal distance between successive binary

alternatives and may be understood as a system-specific ª unit of aging.º The

ª ageº of a system is then given as the number of such system-specific time

intervals rather than simply by a universal parameter time interval. [Note

that this concept of ª ageº is at variance with that of Misra et al. (1979a,b),

who use ª ageº and ª internal timeº synonymously.]
POV time, on the other hand, is independent of any discretization of

the relevant phase space. If such a discretization is introduced by a proper

partition, then POV time still refers to continuous trajectories within each

individual discrete phase cell. Subhistories corresponding to an evolution

within (the interior of) those phase cells are not objects of binary alternatives,

since they cannot be described by projections. Such subhistories are ª unsharpº
(compare Antoniou and Suchanecki, 1997) in the sense that they are not

further decomposable. Their temporal extension is given by the same time

scale as the temporal distance between successive binary alternatives [com-

pare D t due to Mandelstam and Tamm (1945) as discussed in Section 2].

The notion of an internal time of a system reflects the parametrization of the
evolution of a system within this time scale without any binary alternatives

which would allow us to follow this evolution empirically. The notion of a

ª hidden historyº (see next section) may be used for such a situation. It offers

an interesting analogy to the problem of measurement, if one considers such

a ª hidden historyº in terms of a (stochastic) evolution of a nonempirical

(ontic) trajectory over a time interval corresponding to the (average) size of
a phase cell. Empirical (epistemic) binary alternatives and associated self-

adjoint projections are possible right after that time interval. In this sense, a

generalized ª process of measurementº can be conceived as the projection of

a ª hidden historyº onto a binary alternative, and a generalized ª reduction of

a stateº takes place within each phase cell.

From a similar perspective one can understand Misra’ s (1995) recent
result that the purely continuous Klein±Gordon evolution of massive particles

allows self-adjoint extensions TL of a time operator only for discrete subgroups

Un t of Ut (with t 5 " /mc2). The restriction to discrete subgroups represents

nothing else than the introduction of a proper partition. It implies that elemen-

tary propositions corresponding to binary alternatives are meaningful only

with respect to time intervals t depending on the mass of the particle
considered. Within those intervals, the ª dynamicsº is not defined within a

Boolean algebra of binary alternatives (Atmanspacher, 1989). The whole

discussion about ª Zitterbewegungº and other kinds of vacuum fluctuations

refers to such a situation. Misra is entirely right with his comment that such
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phenomena are epistemically unaccessible in the sense of binary alternatives.

Of course, this does not rule out that they may be ontically relevant and have

consequences that are epistemically accessible.
As repeatedly mentioned above, another major difference between TB

and TL consists in the fact that TB is an element of an algebra of (first order)

observables for the system considered, whereas TL is an element of an algebra

of (second order) metaobservables, referring to properties of observables

rather than observables themselves. This can be illustrated most clearly if

the meaning of operators such as TL or M is expressed in terms of correlations,
information, or entropy. Such variables are introduced as Liapunov functions

and imply a broken time symmetry. This is an essential point concerning the

problem as to whether the corresponding metaobservables can equivalently
be understood as ordinary (first order) elements of a reducible W*-algebra

in the framework of a standard representation, obtained via GNS construction.

The concept of a metaobservable does explicitly refer to time-reversal symme-
try breaking, whereas observables in the standard representation do not pre-

suppose such a symmetry breaking in such an obvious way (one may speculate

that it can be provided by a proper GNS construction).

It is also worth addressing the emergence of classical observables in the

framework of a metadescription. Lockhart and Misra (1986; cf. Primas, 1987)
demonstrated that a generalized understanding of measurement (not restricted

to the measurement problem of quantum mechanics) can be achieved if the

measurement process is considered in terms of a ª metadynamicsº in the sense

of a K-flow. (Again, let me mention that this description may be put into

the formal framework of a standard representation, but this is not the issue

here.) By contrast to Hepp’ s (1972) algebraic approach toward measurement,
which depends on the limit of t ® ` to generate irreversible facts in the

sense of classical observables and structures, the Lockhart and Misra scenario

describes a ª gradualº kind of irreversibility that does not allow an ª unfin-

ishedº measurement (i.e., for any finite time) to be undone (cf. Primas,

1997a). Formally, this suggests something like an increasing number of

elements in the center of the algebra of observables. It may be interesting to
speculate that this formal point of view corresponds to an irreversible process

at the level of a metadescription. At such a level, the first-order algebra

of observables becomes a second-order vector space in which a dynamics

according to M with characteristic time scales according to hT might provide

a description of an increasing center of a first-order algebra of observables.

The crucial step to relate TB and TL to one another is to identify a
Liapunov function as the dynamical variable B. Misra (1978) used an entropy

to do so, and Atmanspacher and Scheingraber (1987) effectively generalized

this to (syntactic) information. Both Liapunov functions, entropy and informa-

tion, require that time-reversal symmetry be broken. If the character of entropy
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or information as a second-order observable is not explicitly kept in mind,

it is natural that such proposals lead to considerable confusion, since entropy

and information are not elements of ª ordinaryº algebras of observables. If
one wants to stay at the level of first-order dynamical variables, then one

might consider quantities corresponding to the energy flow through an open

system, such as an energy loss which could be incorporated into a more

familiar formulation. In a recent paper, Primas (1997b) proposed such a

procedure, following ideas of Meixner (1961). Like any other characterization

of irreversibility, this also requires that the time-reversal symmetry of a
unitary evolution has to be broken.

Is it possible to relate the time-reversal symmetry breaking with the

extension of a (first order) POV measure TB to a self-adjoint PV measure

TL? Busch et al. (1994) introduced POV time as time-translation covariant,

so the symmetry breaking has to happen together with the extension into

self-adjointness and together with the step from first-order to second-order
observables, including the selection of a Liapunov function. As a formal

expression of this somewhat sophisticated relationship between TB and TL ,

Antoniou (1997) proposed the conjecture that TL 5 [TB, .] (analogous to L
5 [H, .]), at least in special cases.

Moreover, it might be interesting to work out Giannitrappani’ s (1997)
remark that POV time has two disjoint families of (generalized) eigenvectors.

They might be discussed according to two different semigroup evolutions,

which should be uniquely constructable by Naimark’ s theorem [Naimark

(1943); cf. Jauch and Piron (1967) and the discussion in Section 3; for a

conceptually similar, but formally different approach see Lockhart et al.
(1982) and Antoniou and Prigogine (1993)]. It has to be pointed out, though,
that the formal decomposition of a unitary evolution of a closed system into

two semigroups does not already imply that the physical dynamics of the

same closed system is irreversible in the sense that facts are generated (Primas,

1997a). Assuming that the two semigroups can be interpreted in terms of

different temporal directions, the question would be left open of how and

why one of those directions/semigroups seems to be favored by irreversible
processes as realized in the material world, once the system is an open system.

5. TEMPORAL NONLOCALITY

There is an interesting correspondence between the preceding discussion

of time observables and an approach that has become popular under the name
of ª consistent histories.º This approach was originally introduced by Griffiths

(1984). OmneÁ s (1992) used it as a central feature in his interpretation of

quantum theory, and there are certain links to the concept of decoherence

(Gell-Mann and Hartle, 1990; Zurek, 1991; Kiefer, 1996) that gave rise to
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the notion of ª decoherent histories,º sometimes used instead of ª consistent

histories.º

The formal definition of a history is given in terms of a time-ordered
sequence of commuting projectors Pk

a k(tk),

[P a ] 5 P1
a 1(t1)P

2
a 2(t2) ? ? ? Pn

a n(tn) (22)

which are mutually exclusive,

Pk
a k Pk

b k 5 d a b Pk
a k (23)

and exhaustive binary (yes/no) alternatives, labeled by a ,

o
a n

Pk
a k 5 1 (24)

Sequences such as [P a ] provide descriptions of a set of possible histories
with respect to a coarse graining introduced by a suitable partition. The

coarsest history consists of no projections at all, but just the unit operator.

A completely fine-grained history (such as in Feynman’ s sum-over-histories

framework) would be specified by the values of a complete set of operators

at all times and therefore would have to be based on an infinitely refined
partition. Since such a history cannot consistently be assigned probabilities,

consistent histories require suitable finite partitions to be introduced. Thus

the task is to find those partitions that provide a consistent attribution of

probabilities (e.g., satisfying probability sum rules).

There is a lot more to say about the application of the concept of

decoherence to the histories approach as, e.g., developed by Gell-Mann and
Hartle (1990), Zurek (1991), and others. This is not the place to discuss all

this in detail. A basic point of criticism seems to be that the formalism partly

refers to isolated systems, partly to open systems, and this entails severe

conceptual problems. Stripped of the corresponding confusion, the idea of

decoherent histories basically resembles an exponential divergence of trajecto-

ries such as in K-flows, and the binary alternatives associated with the
projectors Pk

a k(tk) are simply due to the membership function with respect to

individual phase cells of the relevant partition. This is to say that each

projection refers to an element of the discretized history [P a ]. In the light of

the arguments of Section 3, Zurek’ s recent modification of a ª predictability

sieveº in his decoherence approach goes in the same direction (Zurek, 1994).

[The claim that decoherence provides a description of measurement can only
be relevant if the process of measurement is conceptually disentangled from

the generation of classical observables. Classical observables require disjoint

states, which decoherence does not produce in general. There is, however,

no apparent reason why measurement in the general sense of any interaction
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between an object and its (quantum) environment (Griffiths, 1994), not

restricted to laboratory situations, might not be reasonably described in terms

of decoherent processes.]
Rather than elaborating further on these details here, let us focus on

another feature of the histories approach, namely on inconsistent histories.

This term describes the impossibility of assigning probabilities to completely

fine-grained histories in a consistent way. Based on a proposal by Leggett

and Garg (1985), Paz and Mahler (1993; see also Mahler, 1994) studied this

inconsistency in terms of a temporal analog of Bell’ s inequalities, called
temporal Bell inequalities. The temporal character of the inequalities implies

that their violation rejects hidden histories rather than hidden variables. Paz

and Mahler’ s numerical results for a specific quantum transition network

model show that such a system indeed violates temporal Bell inequalities

in analogy to Aspect’ s experimental results for ordinary Bell inequalities.

Corresponding experiments have not yet been carried out.
In the framework of the histories approach, a violation of temporal

Bell inequalities indicates the inconsistency of histories that are too fine-

grained. Now, of course, the question is: what is a good criterion for a

proper coarse graining or, in other words, for a proper partition? Paz and

Mahler’ s criterion is a time-scale argument derived from the incoherent
part of the evolution of the reduced density matrix for the system they

considered. The corresponding time scale t c is basically a relaxation time,

which is infinitely long for closed systems with purely coherent evolution

and vanishes for strictly random processes. Since the incoherent part of

the evolution is responsible for any nonvanishing information flow in the

system, an interpretation in terms of an inverse information flow rate
(such as the KS-entropy) suggests itself.

Any sensible interpretation of the ª evolutionº of a system within t c in

terms of hidden histories is ruled out by the violation of temporal Bell

inequalities. This is to say that within t c there is no history (more precisely:

no consistent history in terms of a sequence of events) that can be determined

by successive binary alternatives. As in the case of the generating partition,
even continuous evolutions appear discretized if they are to be described by

sequences of such alternatives, i.e., by projectors. It is exactly in this sense

that one can speak of some kind of temporal nonlocality, a notion motivated

by comparison to the fundamental concept of nonlocality that is commonly

accepted in present-day quantum theory. The similarity between a temporal

nonlocality due to inconsistent histories and a temporal nonlocality due to
the time operator TB is striking since it not only offers a number of almost

identical crucial features (cf. Section 3), but also gives a very basic motivation

for temporal nonlocality due to the noncommutativity of TB. This is related

to temporal nonlocality due to TL insofar as the existence of a dynamical



644 Atmanspacher and Amann

variable B for a nonstationary state is a necessary condition for TL as well (see

also Misra and Prigogine, 1983; Martinez and Tirapegui, 1985; Suchanecki et

al., 1994; Atmanspacher, 1997).

These analogies notwithstanding, it has to be emphasized that any tempo-

ral nonlocality due to TL is conceptually different from fundamental quantum-

nonlocality in several essential regards: (1) TL is a second-order observable

involving the concept of a Liapunov function, (2) the commutator of M and

L is, by contrast to Planck’ s action " , not a universal constant, but the system-

specific KS-entropy hT , and (3) the definition of TL as well as M presupposes

the selection of a direction of time, i.e., is based on the irreversible evolution

of the distribution function r Ä . Therefore, it is an ambitious goal to identify

a time operator that is logically prior to TL . A natural candidate might be

TB. POV time does not require a direction of time to be selected, although,

if Giannitrappani’ s argument for two disjoint families of eigenfunctions of

TB holds, it entails an explicit option for time-reversal symmetry breaking.

Hence, there is some appeal in considering POV time as a noncommutative

time operator that is more basic than TL . The concrete construction of TL by

the particular choice of a Liapunov function as a dynamical variable B for

nonstationary states supports this suggestion.

Does POV time imply a temporal nonlocality as basic as the fundamen-

tal nonlocality of quantum theory [see Redhead (1987) for a detailed

account of nonlocality from the perspective of the philosophy of physics]?

In fundamental quantum nonlocality, the notion of subsystems of a system

becomes, strictly speaking, inadmissible. For instance, it does not make

sense to talk about two spatially separated photons in Aspect’ s experiment,

as long as no interaction or measurement of the photon pair as a whole

with some environment has taken place. [Recall that there are additional

problems with respect to the localizability of photons, as mentioned in

Section 2 (Jauch and Piron, 1967; Bacry, 1988)]. There is simply no

spatial order in the sense of a distance between any particular locations

within the system as a whole.

With respect to POV time nonlocality, the situation is different. The

(formal, not necessarily physical) symmetry breaking of a unitary evolution

in two different temporal directions according to two disjoint semigroups

implies that temporal order in the sense of a distance between any individual

instants must be well defined. This is a necessary but not sufficient condition

for temporal direction in the sense of irreversibility. Genuine atemporality,

something that is logically prior even to reversible evolution, is not addressed

by POV time nonlocality. Needless to say, it is even less addressed by temporal

nonlocality due to TL , since TL presupposes temporal direction in addition

to temporal order.
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6. SUMMARY

Two different ways to introduce time operators that are not commutative
have been discussed and compared with each other. One of them, TB (Busch

et al., 1994, Giannitrappani, 1997), is based on positive-operator-valued

(POV) measures, not referring to elementary measurements in the sense of

binary (yes/no) alternatives orÐ formally speakingÐ projectors. TB is in gen-

eral not self-adjoint and its set of eigenvectors is in general not orthogonal.

Such a time operator does not commute with the Hamiltonian of the system
considered. It provides a so-called ª unsharpº characterization of the time of

occurrence of an event within a given temporal interval.

Another noncommutative time operator, TL (Misra, 1978), is based on

projection-valued (PV) measures in the Liouville representation. It refers to

binary alternatives corresponding to projectors and is self-adjoint with an

orthogonal set of eigenvectors. Such a time operator does not commute with
the Liouvillean of the system considered. It characterizes the ª ageº of a

system, given in nondecomposable, system-specific units of the inverse of

the KS entropy hT .

There are a number of basic differences between TB and TL . First, TL is

defined at a second-order level where one deals with properties of properties
(observables of observables) of a system. By contrast, TB is defined at the

(usually considered) first-order level and refers to properties (observables)

of a system themselves. Thus, the two time operators belong to two different

algebras of observables. Disregarding this difference inevitably leads to mis-

leading interpretations and all sorts of corresponding confusion.

Second, TB is independent of the selection of a temporal direction,
whereas TL presupposes such a selection in addition to an explicit breaking

of time-reversal symmetry. This becomes obvious if one looks at the way in

which a self-adjoint extension of TB leading to TL can be constructed. This

is done by introducing a Liapunov function such as entropy or, more generally,

information. Thus, TB can be defined for reversible processes, whereas TL is

based on irreversibility. If the Liapunov function required for TL is a second-
order observable (which is the case for entropy and information), then the

self-adjoint extension of TB entails both the transition to irreversibility and

the transition to a second-order level description.

A third major difference between the two types of noncommutative time

operators can be recognized in the way they are related to temporal nonlocality.

TL , or some associated information operator M, refers to a time interval which
is given by the relevant partition, and for which binary alternatives are possible

(with respect to a given accuracy). This time interval is the inverse of the

KS-entropy hT , a dynamical invariant of the system that is intimately related

to its generating partition.
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POV time TB refers to an unsharp time of occurrence of an event rather

than an ª age.º This expresses a temporal nonlocality in the sense that within

a time interval with nonvanishing and finite size there is no way to assign
a temporal instant to an event. One may speculate that the second-order

argument concerning binary alternatives with respect to ª agingº in units of

1/hT is nothing else than an expression of first-order ª unsharpnessº of events

within 1/hT from a different perspective. The essence of both viewpoints is

temporal nonlocality within 1/hT .

Both perspectives, that of TL and of TB, can be conceptually related to
each other within the histories approach (Griffiths, 1984) in the form devel-

oped by Gell-Mann and Hartle (1990). The notion of a consistent history is

bound to a partition that cannot be infinitely refined, but has to be properly

coarse grained. This is closely related to the significance of TL . Inconsistent

histories arise within a system-specific time scale corresponding to the (aver-

age) size of phase cells generated by a (proper) coarse graining. As Paz and
Mahler (1993) have shown, inconsistent histories correspond to violations

of temporal Bell inequalities, thus ruling out hidden histories in analogy to

local hidden variables. The interpretation of TB reflects this kind of nonlocality.

Temporal nonlocality in the two perspectives addressed by TL and TB

must not be considered at the same logical level as fundamental quantum
nonlocality. As far as we can see at present, fundamental quantum nonlocality

requires the concepts of spatial and temporal order in their commonsense

meaning to be given up entirely. This is neither the case for TL nor for TB.

Some preliminary characterizations of temporal nonlocality in the context of

the two time operators have been indicated. For an improved understanding

it will be necessary to look for empirical consequences, to be proposed in
another paper.
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